
Array Design and Expression Evaluation in

POOMA II

Steve Karmesin, James Crotinger, Julian Cummings, Scott Haney,
William Humphrey, John Reynders, Stephen Smith, and Timothy J. Williams

Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, NM 87545

fkarmesin,jac,julianc,swhaney,bfh,reynders,sa smith,zippyg@lanl.gov

Abstract. POOMA is a templated C++ class library for use in the

development of large-scale scienti�c simulations on serial and parallel

computers. POOMA II is a new design and implementation of POOMA

intended to add richer capabilities and greater
exibility to the frame-

work. The new design employs a generic Array class that acts as an inter-

face to, or view on, a wide variety of data representation objects referred

to as engines. This design separates the interface and the representation

of multidimensional arrays. The separation is achieved using compile-

time techniques rather than virtual functions, and thus code e�ciency

is maintained. POOMA II uses PETE, the Portable Expression Tem-

plate Engine, to e�ciently represent complex mathematical expressions

involving arrays and other objects. The representation of expressions is

kept separate from expression evaluation, allowing the use of multiple

evaluator mechanisms that can support nested where-block constructs,

hardware-speci�c optimizations and di�erent run-time environments.

1 Introduction

Scienti�c software developers have struggled with the need to express mathe-
matical abstractions in an elegant and maintainable way without sacri�cing per-
formance. The POOMA (Parallel Object-Oriented Methods and Applications)
framework [1, 2], written in ANSI/ISO C++, has demonstrated both high ex-
pressiveness and high performance for large-scale scienti�c applications on plat-
forms ranging from workstations to massively parallel supercomputers. POOMA
provides high-level abstractions for multidimensional arrays, physical meshes,
mathematical �elds, and sets of particles. POOMA also exploits techniques such
as expression templates [3] to optimize serial performance while encapsulating
the details of parallel communication and supporting block-based data compres-
sion. Consequently, scientists can quickly assemble parallel simulation codes by
focusing directly on the physical abstractions relevant to the system under study
and not the technical di�culties of parallel communication and machine-speci�c
optimization.

POOMA II is a complete rewrite of POOMA intended to further increase ex-
pressiveness and performance. The array and �eld concepts have been redesigned
to use a powerful and
exible view-based architecture that decouples interface
and representation. Expressions involving arrays and �elds are packaged and
manipulated using an enhanced version of PETE, the Portable Expression Tem-
plate Engine. These expressions can operate on subsets of the data, speci�ed
via multiple-dimensional domain objects. Finally, the expressions are e�ciently
evaluated by evaluator objects. These evaluators support a variety of run-time
systems, ranging from immediate serial evaluation to thread-based parallel eval-
uation, as well as complex constructs like where-blocks.

2 Arrays and Engines

An array is a logically rectilinear, N-dimensional table of numeric elements. Most
array implementations store their data in a contiguous block of memory and
apply Fortran or C conventions for interpreting this data as a multidimensional
array. Unfortunately, these two storage conventions do not span the full range of
array types encountered in scienti�c computing: diagonal, banded, symmetric,
sparse, etc. One can even imagine arrays that use no storage, computing their
element values as functions of their indices or via expressions involving other
arrays. One approach to dealing with di�ering array storage strategies is to
simply create new array classes for each case: BandedArray, SparseArray, and
so on. However, this is wasteful since all of these variants have very similar
interfaces.

POOMA II's array class provides a uniform interface independent of how
the data is stored or computed, without incurring the overhead of C++ virtual
function calls. This is accomplished by introducing the concept of an engine. An
engine is an object that provides a common interface for randomly accessing and
changing elements without the need for the user of the engine to know how the
elements are stored. For example, an engine that manages a 100� 200 \brick"
of double-precision values is declared as:

Engine<2, double, Brick> brick(100, 200);

The domain of this engine is the tensor product of [0 : : : 99] by [0 : : : 199]. Simi-
larly, an engine that manages a brick of data distributed across a parallel machine
in a manner speci�ed by an object layout is declared as:

Engine<2, double, Distributed> dbrick(100, 200, layout);

The domain and range of dbrick are identical to that of brick, as is the interface
for accessing elements. However, the implementations are quite di�erent.

Note that engine classes are all specializations of a common template, Engine.
A tag is used to specify a particular engine, such as Brick or Distrubuted,
allowing useful default template parameters to be chosen for the array class.

Engines represent a low-level abstraction: getting single elements from a data
source. The POOMA II array facility provides an e�cient, high-level interface
to engines. POOMA II arrays are declared as follows:

Array<2, double, Brick> A(100, 200);

Array<2, double, Distributed> B(100, 200, layout);

This is a variant of the envelope-letter idiom [4]. Array (the envelope) dele-
gates all operations to the particular sort of engine (the letter) that it contains.
However, compile-time polymorphism, rather than run-time polymorphism, is
used for faster performance. In POOMA II, the engines own the data and ar-
rays simply provide an interface for viewing and manipulating that data. In
this sense they have semantics similar to iterators in the Standard Template
Library [5], except that they automatically dereference themselves. To enforce
const correctness, POOMA II provides a ConstArray class (similar to the STL
const iterator) that prohibits modi�cation of its elements.

3 Domains and Views

Domain objects represent the region or set of points on which an array will de�ne
values. An N-dimensional domain is composed of N one-dimensional domains
and represents the tensor product of these domains. POOMA II includes several
domain classes:

1. Loc<N>: A single point in N-dimensional space.
2. Interval<N>: The tensor product of N one-dimensional sequences each hav-

ing unit stride.
3. Range<N>: Similar to Interval<N>, with strides speci�ed at run time.
4. Index<N>: Similar to Range<N>, but with special loop-ordering semantics

(see below).
5. Region<N>: Tensor product of N one-dimensional continuous domains.

Users choose the domain type that best expresses any constraints that they
wish to impose on the domain. For example, Interval is used for unit-stride
domains and Loc is used for single-point domains. This allows POOMA II to
infer properties of the domain at compile time and optimize code accordingly.

One of the primary uses of domains is to specify subsections of Array objects.
Subarrays are a common feature of array classes; however, it is often di�cult
to make such subarrays behave like �rst-class objects. The POOMA II engine
concept provides a clean solution to this problem: subsetting an Array with a
domain object creates a new Array that has a view engine. For example:

Interval<1> I(10); // I = {0, 1, ..., 9}

Array<1,double,Brick> A(I);

Range<1> J(0,8,2); // J = {0, 2, ..., 8}

Array<1,double,BrickView> B = A(J);

The new array B is a view of the even elements of A: fA(0), A(2), ..., A(8)g.
Note that views always act as references (i.e., B(0) is an alias for A(0), B(1) is an
alias for A(2), etc.). The task of determining the type of view engine to use when
subsetting an Array is handled by the NewEngine traits class. Specializations of

the class template NewEngine de�ne a trait Type t that speci�es the type of
engine that is created when a particular engine type is subsetted by a particular
domain type. Thus, in the above example we could have written:

typedef

NewEngine< Engine<1,double,Brick>, Range<1> >::Type_t View_t;

Array<1,double,View_t::Tag_t> B = A(J);

While users can explicitly declare view-engine-based array objects in the
manner above, these views will usually be created as temporaries via subscripting
and then used in expressions and function calls to specify the elements on which
to operate. For example:

Interval<1> I(10), I2(2,5); // I2 = {2, 3, 4, 5}

Array<1,double,Brick> A(I), C(I);

C(I2) = A(I2+1) - A(I2-1); // C(2) = A(3) - A(1), etc.

The �nal expression builds three temporary views and then executes the expres-
sion on these views.

In multidimensional cases, there can be multiple interpretations of certain
expressions involving views of arrays. For example, if I and J are domain objects,
then what does A(I,J) = B(J,I)mean? If I and J are Interval objects of equal
length, then this would be an element-wise assignment. However, POOMA II's
Index<N> domain objects have knowledge of their loop ordering. If these domain
objects are used, then A(I,J) = B(J,I) assigns the transpose of B to A. Thus,
the user can choose between tensor-like subscript semantics and Fortran 90 array
semantics simply by choosing di�erent domain types.

4 Expressions and Evaluators

Most of the computation in a POOMA II code takes place in mathematical ex-
pressions involving several arrays. Expression templates and template metapro-
grams [3] are used to support an expressive syntax and to implement a number
of compile-time optimizations. The most common of these optimizations is con-
verting these high-level expressions into e�cient low-level loops.

POOMA II maintains abstraction barriers between expression manipulation,
evaluation and data storage. This allows POOMA II to generate e�cient code
for all types of engines, regardless of whether the data is stored locally or in a
distributed fashion.

=

A +

*B

2 C

� H

� H

� H

Fig. 1. Parse tree for the
expression A = B + 2 * C

Expression templates work by storing the parse
tree of an expression with operator objects at non-
leaf nodes and data objects at the leaves. An ex-
pression object is templated on a type that en-
codes the structure of the parse tree so that the
parse tree can be manipulated at compile time to
produce e�cient code. Consider the sample ex-
pression parse tree shown in Fig. 1. PETE encodes
this parse tree in an object of type

TBTree< OpAssign, Array1

TBTree< OpPlus, ConstArray2,

TBTree< OpMultiply, Scalar<int>, ConstArray3 > > >

containing references to arrays A, B and C, and the scalar 2. This expression
object can be used to generate an optimized set of loops. However, it does not
have array semantics and is not an Array, so it cannot be passed to functions
expecting an Array.

The POOMA II engine architecture provides a solution to this problem:
the expression engine. An expression engine wraps a PETE expression with an
engine interface. Values of an expression engine are computed e�ciently by the
expression-template machinery based on the data referred to in an expression
object. With this innovation, the result of an expression involving Array objects
is an Array. Thus, users can write functions that operate on expressions by
templating them for arbitrary engine types. For example,

template<int Dim, class T, class ET>

T trace(const ConstArray<Dim,T,ET> &a) {

T tr = 0;

for (int i = 0; i < a.length(0); ++i) { tr += a(i,i); }

return tr;

}

Then trace(B+2*C) sums the diagonal components of B+2*C without computing
any of the o�-diagonal values.

Expression evaluation is a separate component from the array and expression
objects. Evaluators only require a few basic services from arrays and expressions:
subsetting, returning an element, getting a domain, etc. Any object that can
use those services to evaluate expressions quali�es as an Evaluator. Expression
evaluation is triggered by the assignment operator of Array, which builds a
new Array that has an expression engine and hands it o� to an Evaluator.
Each expression is de�ned on a domain, and the Evaluator invokes a function
specialized on the type of the domain to evaluate the expression at each point.

For example, suppose an expression is de�ned on a domain that has only
STL-style iterators for looping over the domain. Then, if the domain object is
dom and the expression-array object is expr, the inner evaluation loop could look
like

for (dom::iterator dp = dom.begin(); dp != dom.end(); ++dp)

expr(*dp);

If the domain is a two-dimensional Interval, for which we know that the strides
are all unity, the inner loops would look like

for (int j = 0; j < dom[1].length(); ++j)

for (int i = 0; i < dom[0].length(); ++i)

expr(i, j);

The type of inner loop can be determined at compile time since it depends on
the type of the domain. That allows the most specialized|and therefore the
most e�cient|code to be used for the provided data structures.

The Evaluator classes also provide a where-block interface, enabling code
such as

where(A < 1);

B = A;

elsewhere();

B = 1 - A;

endwhere();

This code sets array B to A wherever A is less than 1 and 1 - A otherwise. Each
call to where(), elsewhere() and endwhere() manipulates state information
in the evaluator that in
uences how expressions are evaluated.

One way to store this state is as a boolean mask array. Because where-blocks
can be nested, there must be a stack of such masks, and the top of the stack
is the mask for the currently active where-block. Alternatively, one can store a
one-dimensional vector of discrete points where the expression is to be evaluated.
This would be more e�cient than the boolean mask if a small fraction of the
mask is true. In either case, the Evaluator extracts an evaluation domain from
the where-block expression and evaluates the expression at each point.

The evaluator system is designed to be extensible. Key extensions that are
now under development include:

1. Multiblock. Multiblock arrays decompose their data into multiple blocks.
The evaluator intersects the subdomains of a multiblock expression, subsets
the expression with the intersections, and then evaluates the expression on
each subdomain.

2. SPMD Parallel. In an SPMD parallel environment, the evaluator employs
an algorithm such as owner-computes to decide what part of the whole do-
main should be evaluated on the local processor. It then takes a local view
of the expression on that domain. If arrays in the expression have remote
data, they must transfer their remote data in order to provide a local view.
Once this view is constructed, it can be evaluated e�ciently.

3. Advanced Optimizations. When an expression is ready for evaluation,
it need not be evaluated immediately so long as there is a mechanism to
account for data dependencies. There are two important reasons for deferred
evaluation:
(a) Cache optimization. A given calculation often involves a series of state-

ments that use particular arrays multiple times, but each array is too
large to �t in cache. In that case, it is more e�cient to block each state-
ment and evaluate one block for a series of statements before working
on the next block.

(b) Overlapping communication and computation. Typically the parts of a
statement that require communication are along the boundaries of the
domain for a given processor. Computation in the interior can proceed
while communication needed for the boundaries is taking place.

5 Performance

In order to illustrate performance characteristics of POOMA II, we present a
sample results using a stencil benchmark code. A stencil expression is an array
expression that involves the same array object evaluated at several nearby points.
Such expressions occur frequently in the numerical approximation of partial
di�erential equations, and thus it is important that such expressions be evaluated
e�ciently.

Consider the simple stencil expression

B(I) = K * (A(I+1) - A(I-1))

To produce optimal code, the compiler must know that B is not aliased to any-
thing on the right-hand side. It can put &B, &A and K in registers and unroll
the loop so that it can save A(I+1) in a register and reuse this value when it
needs A(I-1). Accomplishing these optimizations is non-trivial. First, the com-
piler must be told, via the restrict keyword, that B is not aliased. Second,
the compiler must be able to see that both occurrences of A refer to the same
array. This is not guaranteed with expression templates, since the pointer to the
array being operated on is buried in a TBTree node. Failure to realize this will
not only prevent loop unrolling, but also result in the use of extra registers. For
large stencils, the compiler may run out of registers (\register spillage"), which
greatly impacts performance [6].

These problems can be overcome by encapsulating the stencil operation in
a class. A stencil object calculates the value of the stencil given an array and
an index. POOMA II stencil objects are fully integrated with the expression-
template machinery.

Our stencil benchmark compares four approaches to the evaluation of the
9-point stencil

B(I,J) = c * (A(I-1,J-1) + A(I,J-1) + A(I+1,J-1) +

A(I-1,J) + A(I,J) + A(I+1,J) +

A(I-1,J+1) + A(I,J+1) + A(I+1,J+1));

The evaluation methods are C code with restrict, C-style code using POOMA
II arrays (C++ indexing), POOMA II code using expression templates (POOMA
II Unoptimized), and POOMA II using stencil objects (POOMA II).

The benchmark was performed on an SGI Origin 2000 with 32 KB of pri-
mary cache, 4 MB of secondary cache, and a theoretical peak performance of
400 MFlops. Figure 2 shows the results for the four evaluation techniques using
N �N arrays, where N ranges from 10 to 1000. The C code runs signi�cantly
faster than the all the C++ versions because it exploits the restrict keyword.
For N > 40, the arrays are larger than primary cache, but there is little ef-
fect on performance. For N > 400, the arrays are larger than secondary cache,
which leads to a large speed reduction. As the curves for the POOMA II unopti-
mized and stencil-object versions demonstrate, there is non-zero overhead in the
expression-template machinery for small N . The advantage of the stencil-object

0

5 0

100

150

200

250

1 0 100 1000

Problem size, N

M
FL

O
P

S

C with restrict C++ Indexing Pooma II (Unoptimized) Pooma II

Fig. 2. Stencil benchmark results

approach over the unoptimized approach is clearly visible forN < 100. This does
not persist for large N because the loop is not unrolled (no restrict) and the
stencil is not su�ciently large to cause register spillage. An important result is
that the stencil-object version performs almost identically to the C++ indexing
version for N > 30. Once restrict is fully supported for C++, the performance
of stencils implemented using POOMA II should closely approach that of C.

References

1. William Humphrey, Steve Karmesin, Federico Bassetti, and John Reynders. Opti-

mization of data-parallel �eld expressions in the POOMA framework. In ISCOPE

'97, December 1997. Marina del Rey, CA.

2. John Reynders et al. POOMA: A framework for scienti�c simulations on parallel

architectures. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming

using C++, pages 553{594. MIT Press, 1996.

3. Todd Veldhuizen. Expression templates. C++ Report, June 1995.

4. James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley,

1992.

5. David R. Musser and Atul Saini. STL Tutorial and Reference Guide: C++ Pro-

gramming with the Standard Template Library. Addison-Wesley, 1996.

6. Federico Bassetti, Kei Davis, and Dan Quinlan. A comparison of performance-

enhancing strategies for parallel numerical object-oriented frameworks. In ISCOPE

'97, December 1997. Marina del Rey, CA.

